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More Electrical Aircraft (MEA) 
•  Aircraft non-propulsive aircraft systems employ four types of power: 
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Power Type Sourcing 
Hydraulic Gear box driven pumps, auxiliary power unit (APU) 

Pneumatic Bleeding from the high pressure stage of the turbine engine 

Mechanical Gear boxes driven by the main turbine engines 

Electrical Gear box driven generators, APU 

Prominent to MEA are: 
•  use of Li-ion batteries 
•  electrical starting of the engine 

using S/G 
•  HVDC distribution at 270/540Vdc 

instead of 115/230Vac 
•  single power network (electrical), 

enhancing the manageability of 
AES 

•  replacement of the APU turbine 
with a fuel cell. 

Auxiliary
Power	Unit



Context 
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Electrical Test Bench (ETB) reproducing 
the entire electrical network of an aircraft 
such as regional jets, private jets and 
rotorcraft (2002–2006 European project 
Power Optimised Aircraft). 

www.sepdc-fp7.eu 
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The COPPERbird & SEPDC 
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Research Objectives 
The research objectives are: 
 
•  Develop a 5 kW laboratory scaled version of the updated COPPERbird 

ETB, called the Small Scale Test Bench (SSTB) 

•  Create a Virtual ETB through modelling of the SSTB equipment:  
–  behavioural and functional level models  
–  execution in a real-time simulation environment 

•  Hybridize a 1.2 kW proton exchange membrane (PEM) fuel cell with a 100 
Ah LiFePO4 Li-ion battery as APU replacement 

•  Develop an EMS for the hybrid APU: 
–  ensure optimal power split between sources subject to operation constraints 

•  Validate the EMS through simulations and experimental testing using the 
VETB and SSTB 
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The SSTB Layout 
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Small Scale Test Bench 
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•  Real-time simulation environment provides RCP, HIL and SIL functionalities, 
but also constraints: simulation step times of <20 us, no algebraic loops 

•  VETB Organisation: 

•  VETB Workflow: 

Virtual Electrical Test Bench 
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Li-ion for MEA 
•  More Electrical Aircraft (MEA) will rely much more heavily on the battery, 

with lithium-ion stepping in as the most appropriate battery technology 
•  Lithium-ion as a replacement for the industry standard sealed lead-acid 

(SLA) battery stems from their inherently high specific power and energy 
ratings which result in lower weight and the capability to deliver the high 
currents required for engine starting via the Starter/Generator 

•  Advanced aircraft energy management (EM) schemes can also use the 
battery to satisfy peak power demand, especially when paired with a fuel 
cell as an auxiliary power unit (APU) replacement. 

•  Current developments looking at safer chemistries: LiFePO4 and Li-S 

It is thus highly desirable to be able to predict the electrical behaviour of 
the lithium-ion battery during both normal and high stress engine 

starting operations, all whilst having accurate knowledge of its state of 
charge (SOC) for proper energy management decisions.  
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Battery Modelling 
•  Thevenin circuit with two RC parallel networks in series 
•  Two circuits provide the best compromise between accuracy and 

computational intensity (Zhang and Chow, 2010) 
•  Facilitates simulation with other electrical circuitry 
•  Characterised using current pulse techniques 

where S = State of Charge (0-1), I = battery current (A), T = temperature (K) 
14	
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EEC State Space 
•  Battery terminal voltage equals OCV minus the losses 

•  State space representation 

•  Coulomb counting method (positive current equals discharging) 
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EEC Model Block Diagram Simulink 
•  The parameters values are extracted using HPPC 
•  The parameter values are sensitive to the current direction to compensate 

for hysteresis in the OCV 
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Battery Model Validation 
•  Test 1: Reapply the current profiles used for the characterisation 

          Hybrid current pulse test at C/2 20°C 
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Battery Model Validation 
Test 2: Apply a constant current discharge at 1C and 5°C 

C-rate	 T	(°C)	 Error	mean	
(V)	

Error	mean	
percentage	(%)	 Type	

1C	 5	 -0.0166	 -0.5490	 CC	
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Parameter Extraction Explanation 
•  Li-ion batteries are sensitive to over- and undervoltage situations 
•  At high and low SOC levels, the pulse current must be limited 
•  Leading to a deformed voltage curve 

19	Applying a charge pulse at high SOC level 

Current not limited Current limited 



Parameter Extraction Problems 
•  Undersampling can lead to misidentifying the internal resistance 
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Battery SoC Estimation 
•  Coulomb counting: integrates battery current but suffers from accumulated 

errors stemming from sensor noise and bias 

Solution: couple the state space model with an estimator which generates an 
estimated value of the SOC by observing the battery current and battery 
terminal voltage whilst minimising the error between battery and model output. 

•  Kalman filter (KF): for linear systems 
 
•  Extended KF: non-linear with the current mean and covariance linearised 
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SOC Estimation Validation 
•  The non-linear battery model is subjected to a pulsed load current at 40 A  
•  The input current has added noise with a covariance of Q=1x10-3, and the 

output added measurement noise with a covariance of R=1. 
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Results: Battery Terminal Voltage 
•  Both filters track the battery terminal voltage very well, showing that the 

KF would suffice should the estimation of the terminal voltage be the aim. 
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Results: SOC Estimation 
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SOC Estimation 
Kalman 

type 
SOC 

error max SOC error mean Convergence 
time (s) 

Simple - - - 
Extended 0.0628 0.011 1991 
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•  Simple Kalman filter fails to converge due it attempting to estimate a non-
linear process using a linear model 
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Fuel Cell for APU 
Replacement of the gas turbine with a FC holds potential benefits: 
 

•  reducing noise and exhaust gas pollution 
•  producing water usable for on-board purposes 
•  DC output simplifies electrical interfacing to the HVDC bus 
•  estimated fuel efficiency of 61% for sea level and 74% for altitude 

conditions versus the average 20% of the turbine APU. 

Hybridizing the FC with an energy storage element holds benefits: 

•  near constant current operation 
–  reduce operational stresses, extending operational life 
–  operation in highest efficiency region 

Given multiple sources energy management becomes essential to 
reach and impose system operational goals and constraints 26	



Hybridization Techniques 
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Hybridized APU Test Bed 
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Fuel	cell 
Type PEM 
Maximum	net	power 1.2	kW 
Opera1ng	net	voltage	range 23	V	to	41	V 
Voltage	at	rated	net	power 26	V 
Current	at	rated	net	power 46	A 
Number	of	cells 47 

BaIery 
Type Li-ion	(LiFePO4) 
Opera1ng	voltage	range 24	V	to	28.8	V 
Nominal	voltage 25.6	V 
Nominal	capacity	(C/2) 100	Ah 
Nominal	energy 2.56	kWh 
Cell	configura1on 8s2p 

MIPEC	Converter 
Fuel	cell	and	baIery	inductor 164	μH	(50mΩ) 
Bus	capacitor 1890	μF	(69mΩ) 
Bus	reference	voltage 90	V 
Buck	output	capacitor 840	μF	(69mΩ) 
Switching	frequency	 20	kHz 
Maximum	output	power	per	
leg 510	W 

Minimum	efficiency	at	max	
power 0.855	(boost) 

MIPEC: multiple-input power electronic converter (Ferreira et al., 2008) 
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Test Bed Limitations 
For basic boost converters it is advised to 
• maintain the duty cycle of a boost converter below the ”knee”, i.e. D ≤ 0.8, 
• not exceed an output-input voltage ratio of more than 6 
otherwise control loop stability becomes an issue. 
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Energy Management Strategy (EMS) 
The EMS goals, i.e. operational constraints, are: 
 
•  avoid operation of the fuel cell at its maximum power, instead opting for its 

nominal power for higher efficiency and extended lifetime 

•  maintain the battery SOC at an optimal range of 0.5<SOC<0.9 for it to 
always be able to supply and absorb power 

•  avoid operation of the battery at low SOC<0.5 values in order to extend its 
operational lifetime. 

In this study the FC maintains the bus voltage whilst the battery is current 
controlled to supply load transients 
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EMS Hierarchy 
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Fuzzy-logic Supervisor 
Advantages: 
• well adapted to multi-objective energy management 
• accommodates the intrinsic non-linear characteristics of the sources 
• achieves adequate efficiency without compromising source performance and 
reliability 
• aids in building comprehensive and intuitive control strategies.  
 
Disadvantages: 
• relies heavily upon the designer’s knowledge of the power system sources in 
order to correctly define the fuzzy rules and membership functions. 
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Membership Functions 
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Emergency Load Profile 
•  Study based on a hypothetical MEA the same size as an Airbus A330 with 

electrohydraulic actuators (EHA) (Langlois, 2006) 
•  Scaled by 1/50 for SSTB 
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Hybrid APU Load Profile Test (VETB) 
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•  Bus voltage and system currents 
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Hybrid APU Load Profile Test 
•  Subject the hybrid APU to a dynamic section of the load profile 
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Hybrid APU Load Profile Test (VETB) 
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Cascade PI Control     Sliding Mode Control 

•  Bus voltage and system currents 
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Hybrid APU Load Step Test (SSTB) 
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•  Cascade PI control, step 200 W to 800 W 
•  Transients within MIL-STD-704F range of Vmax = 73 V, Vmin = 44 V 
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Hybrid APU Load Profile Test (SSTB) 
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•  Cascade PI control 
•  Transients within MIL-STD-704F range of Vmax = 73 V, Vmin = 44 V 
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Fuzzy Supervisor Validation 
The fuzzy-logic supervisor is validated assuming the worst case scenario of a 
battery SOC at 40 %, with and without frequency decoupling of 50 mHz. 
 
This will illustrate all of the fuzzy-logic rules. 
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Fuzzy Supervisor Validation 
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Fuzzy Supervisor Validation 
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Conclusions 
•  5 kW Small Scale Test Bench is derived from the COPPERbird ETB 

•  VETB models Li-ion battery with EKF for SOC estimation 

•  A  PEMFC is hybridized with a Li-ion battery to replace the traditional gas 
turbine based  APU 

–  Active hybridization using indirect coupling allows active power sharing whilst maintaining a 
fixed bus voltage 

–  The FC converter regulates the bus voltage whilst the battery converter handles load 
transients in current control 

•  The EMS assumes three levels 
–  1. Fuzzy-logic supervisor for power  splitting 
–  2. Mode determination with hysteresis 
–  3. Converter level control employing SMC and type II compensators 

•  Fuzzy-logic supervisor attains EMS goals of maintaining the battery SOC 
around 85 % whilst avoiding operation of the FC at full power 

•  Being able to fulfil the load demand of the most stringent of flight phases, a 
FC and battery combination could well be used as an APU replacement. 



Future Works 
•  Incorporate specially developed converters to attain 270Vdc operation, then 

reintegrate SMC 

•  Incorporate more energy storage elements such as supercapacitors 

•  The converter roles are to be swapped with the battery controlling the bus 
voltage with the fuel cell in current control 

 
•  Expand the VETB with models of the starter/generator (S/G), EMA, 

electrical taxiing, environmental control system (ECS), etc. 

•  Implement Electrical Load Management (ELM) algorithms for load shedding 
during emergency operations 

•  Incorporate more EMS goals such fuel cell current rate limiting, hydrogen 
consumption, etc., and expand EMS to the whole bench 



Merci	-	Thank	You	


